In vitro Study of Lactobacillus paracasei CNCM I-1518 in Healthy and Clostridioides difficile Colonized Elderly Gut Microbiota
- 2019-12-10
- Frontiers in Nutrition 6
- Sophie Fehlbaum
- C. Chassard
- C. Schwab
- Maarja Voolaid
- Candice Fourmestraux
- M. Derrien
- C. Lacroix
- PubMed: 31921877
- DOI: 10.3389/fnut.2019.00184
Abstract
Consumption of probiotic bacteria can result in a transient colonization of the human gut and thereby in potential interactions with the commensal microbiota. In this study, we used novel PolyFermS continuous fermentation models to investigate interactions of the candidate probiotic strain Lactobacillus paracasei CNCM I-1518 (L. paracasei) with colonic microbiota from healthy elderly subjects using 16S rRNA gene amplicon sequencing and metatranscriptomics, or with microbiota in vitro-colonized with Clostridioides difficile (C. difficile NCTC 13307 and C. difficile DSM 1296)-an enteropathogen prevalent in the elderly population. Small changes in microbiota composition were detected upon daily addition of L. paracasei, including increased abundances of closely related genera Lactobacillus and Enterococcus, and of the butyrate producer Faecalibacterium. Microbiota gene expression was also modulated by L. paracasei with distinct response of the Faecalibacterium transcriptome and an increase in carbohydrate utilization. However, no inhibitory effect of L. paracasei was observed on C. difficile colonization in the intestinal models under the tested conditions. Our data suggest that, in the in vitro experimental conditions tested and independent of the host, L. paracasei has modulatory effects on both the composition and function of elderly gut microbiota without affecting C. difficile growth and toxin production.
Keywords: Clostridioides difficile; Faecalibacterium; Lactobacillus paracasei CNCM I-1518; elderly; gut microbiota; intestinal model; metataxonomics; metatranscriptomics.
Research Insights
Supplement | Health Outcome | Effect Type | Effect Size |
---|---|---|---|
Lactobacillus paracasei | No Effect on Clostridioides difficile Colonization | Neutral | Small |
Lactobacillus paracasei 431 | Improved Abundance of Beneficial Bacteria | Beneficial | Small |
Lactobacillus paracasei 431 | Improved Carbohydrate Metabolism | Neutral | Small |
Lactobacillus paracasei IMC 502 | Improved Gut Microbiota Composition | Neutral | Small |
Lactobacillus paracasei IMC 502 | Modulated Microbiota Gene Expression | Beneficial | Moderate |
Lactobacillus paracasei IMC 502 | No Effect on Clostridioides difficile Colonization | Neutral | Small |
Lactobacillus paracasei MCC1849 | Improved Carbohydrate Metabolism | Neutral | Small |
Lactobacillus paracasei MCC1849 | Modulated Gut Microbiota Composition | Neutral | Small |
Lactobacillus paracasei MCC1849 | No Effect on Clostridioides difficile Colonization | Neutral | Small |
Lactobacillus paracasei subsp. paracasei UALpc-04 | Improved Gut Microbiota Composition | Neutral | Small |
Lactobacillus paracasei subsp. paracasei UALpc-04 | Modulated Microbiota Gene Expression | Beneficial | Moderate |
Lactobacillus paracasei subsp. paracasei UALpc-04 | No Effect on Clostridioides difficile Colonization | Neutral | Small |
Lactobacillus paracasei VPro 224 | Improved Carbohydrate Metabolism | Neutral | Small |
Lactobacillus paracasei VPro 224 | Improved Gut Microbiota Composition | Neutral | Small |