Skip to main content
Supplement Research and Comparison WebsiteBest Price GuaranteeAbout Us
Supplement Research and Comparison Website

Abstract

A feeding experiment was conducted to investigate the interaction of probiotic Bacillus subtilis and prebiotic fructooligosaccharide (FOS) on the growth performance, immunity, intestinal microflora and disease resistance of sea cucumber (Apostichopus japonicus). Five hundred and forty individuals (initial body weight: 5.06 +/- 0.10 g, mean +/- S.E) were fed nine practical diets according to a 3 x 3 factorial design: the basal diet as the control diet supplemented with three levels of B. subtilis (0, 1.82 x 10(7) or 4.95 x 10(7) CFU g(-1) diet), crossed with 0, 0.25% or 0.50% FOS. After 8 weeks, three sea cucumbers per tank were sampled for bacterial quantification and immunity determination. Then all the sea cucumbers left were challenged by Vibrio splendidus. The results showed that dietary B. subtilis significantly increased the specific growth rate (SGR), total coelomocytes counts (TCC), phagocytosis of sea cucumbers, the counts of total viable bacteria and disease resistance to V. splendidus (P < 0.05), whereas the counts of Vibrio decreased. However, dietary B. subtilis had no significant effect on phenoloxidase (PO) activity in coelomocyte lysate supernatant (CLS) (P > 0.05). The SGR, PO activity, total viable bacterial counts (TBC) and Vibrio counts (VBC) were significantly affected by dietary FOS. In the group with 0.50% FOS, TCC, phagocytosis and PO activity significantly increased compared to the group fed without FOS in diet (P < 0.05). In the groups with 1.82 x 10(7) CFU B. subtilis/g diet, FOS supplementation remarkably decreased VBC. And higher level of FOS (0.50%) resulted in significantly higher TCC and PO activity compared with 0.25% FOS (P < 0.05). Moreover, the animals fed with diets supplemented with 0.25% and 0.50% FOS at each B. subtilis level had notably lower cumulative mortality after 14 days following V. splendidus exposure (P < 0.05). Under the experimental conditions, dietary B. subtilis and FOS had a synergistic effect on enhancing immunity and disease resistance of sea cucumber (P < 0.05).

Research Insights

SupplementHealth OutcomeEffect TypeEffect Size
Bacillus SubtilisEnhanced Disease ResistanceBeneficial
Large
Bacillus SubtilisEnhanced Phagocytic ActivityBeneficial
Large
Bacillus SubtilisImproved Growth PerformanceBeneficial
Large
Bacillus SubtilisIncreased Total Coelomocyte CountBeneficial
Large
Bacillus SubtilisIncreased Viable Bacteria CountBeneficial
Large
Bacillus SubtilisReduced Vibrio CountsBeneficial
Large
Bacillus subtilis SNZ-1972Enhanced Disease ResistanceBeneficial
Large
Bacillus subtilis SNZ-1972Improved Growth PerformanceBeneficial
Large
Bacillus subtilis SNZ-1972Improved ImmunityBeneficial
Large
Bacillus subtilis SNZ-1972Reduced Vibrio Counts in IntestineBeneficial
Moderate
⬆ Back to top
Unsubscribe anytime. See our Privacy Policy.
Pillser
Supplement Research and Comparison Website: evidence-based information about supplements, their benefits, potential risks, and their efficacy.
Join Our Community
Statements on this website have not been reviewed by the U.S. Food and Drug Administration. These products are not meant to diagnose, treat, cure, or prevent any disease. The information here is not a replacement for personal medical advice.