Skip to main content

Abstract

A long-term exposure to lipopolysaccharides results in the gut inflammation and its impaired barrier function, leading to the development of metabolic disorders. In this study, the role of dietary heat killed Lactobacillus pentosus S-PT84 on preventing endotoxemia to maintain metabolic homeostasis was studied. We demonstrated that the treatment of L. pentosus S-PT84 improved the gut integrity by maintaining tight-junction protein expression, in order to suppress the infiltration of endotoxin into plasma. The systemic inflammatory responses were inhibited via reducing the secretion of TNF-α and MCP-1. Furthermore, the blood lipid profile and glucose level as well as adiponectin in both plasma and white adipose tissues (WAT) were preserved by L. pentosus S-PT84 through upregulation of PPAR-γ and IRS-1 expression in WAT. The above findings suggest that the metabolic homeostasis in mice treated with HFD and LPS was sustained by L. pentosus S-PT84, leading to reducing the early risk for progression into metabolic disorders.

Keywords: Lactobacillus pentosus S-PT84; gut mucosal integrity; low-grade chronic inflammation; metabolic disorders; white adipose tissue.

Research Insights

SupplementHealth OutcomeEffect TypeEffect Size
LactoSporeImproved Gut IntegrityBeneficial
Moderate
LactoSporeMaintained Metabolic HomeostasisBeneficial
Large
LactoSporeReduced Systemic Inflammatory ResponseBeneficial
Moderate
⬆ Back to top
Pillser
Supplement Research and Comparison Website: evidence-based information about supplements, their benefits, potential risks, and their efficacy.
Receive updates about our products, services, sales, and special offers. Unsubscribe anytime. See our Privacy Policy for details on how we handle your information.

Join Our Community

Use support@pillser.com to get in touch.