Skip to main content

Abstract

The aim of the present study was to evaluate the effects of Lactobacillus rhamnosus GG (LGG; ATCC 53013) on growth performance and hepatotoxicity in calves fed a single dose of aflatoxin B1 (AFB1) and to investigate the absorption, distribution, and elimination of AFB1 and the hydroxylated metabolite aflatoxin M1 (AFM1) in rumen fluid, blood, and excretions. Twenty-four male Holstein calves were blocked for body weight and age and were randomly assigned to 1 of 3 treatment groups: (1) untreated control, (2) treated with 4.80 mg of AFB1 (AFB1 only), or (3) treated with 1 × 1010 cfu of LGG suspension and 4.80 mg of AFB1 (AFB1 plus LGG). The calves received LGG suspension in 50 mL of phosphate-buffered saline daily via oral administration for 14 d before and on the day they received a single oral dose of AFB1. Body weight was recorded at the beginning of the study (before LGG administration), at the day of AFB1 administration, and at the end of the trial. Rumen fluid, blood, urine, and feces samples were collected continuously for 96 h after AFB1 administration. Average daily gain (ADG) and plasma biochemical parameters were analyzed, and concentrations of AFB1 and AFM1 in the samples were determined for monitoring excretion pattern and toxicokinetics. The results showed that ADG was lower in AFB1-treated animals; LGG administration partially mitigated the decrease in ADG (0.85 ± 0.08 vs. 0.76 ± 0.18 kg of gain/d). The AFB1 treatment increased plasma aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase levels. Administration of LGG alleviated the AFB1-induced increase in plasma enzymes activity. The excretion patterns of AFB1 and AFM1 were surprisingly regular; toxins were rapidly detected in all samples after a single oral dose of AFB1, and the peak of toxins concentrations was sequentially reached in rumen fluid, plasma, urine, and feces (except AFM1 in rumen fluid), followed by an exponential decrease. The excretion curves showed that AFB1 and AFM1 concentrations were the highest in feces and urine, respectively. Administration of LGG decreased the concentrations of free AFB1 and AFM1 in rumen fluid and reduced the release of toxins into plasma and urine. Toxicokinetic parameters (except for the time of maximum concentration and the terminal half-life) were reduced by LGG administration. In conclusion, the absorption, distribution, and excretion of AFB1 and AFM1 were rapid in calves fed a single dose of AFB1. Urine was the main route for the excretion of AFM1, and the clearance pattern from the peak of concentration was well fitted by exponential decreasing function. Administration of LGG reduced the absorption of AFB1 in the gastrointestinal tract by increasing the excretion via the feces, thus alleviating the hepatotoxic effect of AFB1.

Keywords: Lactobacillus rhamnosus GG; aflatoxin B(1); excretion; toxicokinetics.

Research Insights

SupplementHealth OutcomeEffect TypeEffect Size
Lactobacillus rhamnosus GGIncreased Average Daily GainBeneficial
Moderate
Lactobacillus rhamnosus GGIncreased Fecal ExcretionBeneficial
Moderate
Lactobacillus rhamnosus GGReduced Absorption of AFB1Beneficial
Moderate
Lactobacillus rhamnosus GGReduced HepatotoxicityBeneficial
Large
⬆ Back to top
Pillser
Supplement Research and Comparison Website: evidence-based information about supplements, their benefits, potential risks, and their efficacy.
Receive updates about our products, services, sales, and special offers. Unsubscribe anytime. See our Privacy Policy for details on how we handle your information.

Join Our Community

Use support@pillser.com to get in touch.